The Relation of Coaching Context and Coach Education to Coaching Efficacy and Perceived Leadership Behaviors in Youth Sport

Philip Sullivan
Brock University

Kyle J. Paquette
University of Ottawa

Nicholas L. Holt
University of Alberta

Gordon A. Bloom
McGill University

This research was supported by the Social Sciences and Humanities Research Council.

The purposes of this study were to examine how coaching context and level of coaching education were related to coaching efficacy and, subsequently, how coaching efficacy was related to perceived leadership behaviors in youth sports. One hundred and seventy-two youth sport coaches completed the Coaching Efficacy Scale and Revised Leadership Scale for Sports. Structural equation modeling revealed that coach education significantly affected the multidimensional construct of coaching efficacy whereas coaching context did not. Coaching efficacy predicted perceived leadership behaviors comprising training and instruction, positive feedback, social support, and situational consideration. These findings question the issue of coaching efficacy as a factor that may distinguish between coaches at different organizational contexts but highlight the importance of coach education training for improving coaching efficacy in youth sport.

Coaches’ behaviors can exert a powerful influence on children’s experiences in youth sport (Smith & Smoll, 1990; Weiss & Gould, 1986). For example, coaching
Coaching Efficacy and Leadership Behaviors in Youth Sport

behaviors can positively influence children’s self-esteem and degree of enjoyment they experience, as well as their desire to continue participating in sport (Conroy & Coatsworth, 2006; Scanlan & Lewthwaite, 1986; Smith, Zane, Smoll, & Coppel, 1983; Smoll, Smith, Barnett, & Everett, 1993). On the other hand, undesirable coaching behaviors have been linked to several negative outcomes in youth sport, including decreased sport satisfaction (Fraser-Thomas & Côté, 2009) and higher rates of burnout and dropout (Gould, Udry, Tuffey, & Loehr, 1996; Pelletier, Fortier, Vallerand, & Brière, 2002). Coaching behaviors do “not occur in a vacuum” (Horn, 2008, p. 243); rather contextual factors “lead up to, or explain, the types of behaviors that coaches will exhibit in sport settings” (p. 244). Hence, this study examined contextual antecedent factors and how they were related to coaching efficacy and perceived leadership behaviors in youth sport.

The current study was guided by Horn’s (2008) working model of coaching effectiveness, which is generally consistent with other models of leadership effectiveness in sport (e.g., Challadurai, 2007; Smith & Smoll, 1989). The Horn model is based on three assumptions. The first is that antecedent factors (i.e., sociocultural context, organizational climate, and coaches’ personal characteristics) influence coaches’ behaviors indirectly through coaches’ expectancies, beliefs, and goals. Second, coaches’ behaviors directly influence athletes’ evaluations of their coaches’ behaviors and team performance. Finally, the effectiveness of coaches’ behaviors is influenced by situational factors and athletes’ individual differences. This working model provides an important foundation for research, but as Myers, Vargas-Tonsing, and Feltz (2005) suggested “much work remains in clarifying the specific relationships that exist within these assumptions” (p. 130).

The current study focused primarily on the relationship between coaches’ beliefs and behaviors, and what Horn (2008) categorized as antecedent factors proposed to influence coaching behaviors; specifically organizational climate and personal characteristics. Organizational climate refers to the specific sport program structure and the “effect that the particular sport program structure might have on the coach” (p. 252). Organizational climate was operationalized in the current study in terms of competitive context. Two distinct types of coaching context have been identified in the youth sport coaching literature: performance coaching and participative coaching (Côté, Young, North, & Duffy, 2007; Lyle, 1999). Performance coaching involves a relatively high commitment to performance and coaches typically develop a detailed seasonal plan to influence performance. In contrast, participative coaching emphasizes effort and satisfaction and there are limited attempts to control variables that affect performance. This distinction is consistent with other terms in the literature, namely Chelladurai’s (2007) description of sports participation as the pursuit of pleasure versus the pursuit of excellence.

The current study was conducted in Canada. The Coaching Association of Canada (CAC) differentiates between community and competitive coaching contexts. The community context focuses on broad based participation (e.g., introductory soccer leagues) and is equivalent to participative coaching. The competition context focuses on skill development for participating in local, regional, or national competitions (e.g., provincial soccer teams) and is akin to performance coaching. Since each of these contexts is characterized by different situational variables (e.g., the importance of competition), by placing our research within this framework, we were able to (1) operationalize organizational climate in a precise and meaningful way, and (2) support the ecological validity of any findings within youth sport in Canada.
According to Horn (2008), organizational climate should affect coaches’ perceptions and subsequent behaviors. The focal perception for the current study is coaching efficacy (CE). CE is a sport-specific concept defined as the extent to which coaches believe they have the capacity to affect the learning and performance of their athletes (Feltz, Chase, Moritz, & Sullivan, 1999). Although Horn originally noted that efficacy is an example of coaches’ personal characteristics, it has more recently been argued (cf. Feltz, Short, & Sullivan, 2008) that efficacy as a construct is a self-perception, and thus a more logical fit within what Horn defines as coaches’ beliefs, expectancies, values, and goals. Furthermore, research has noted that CE has a direct link with coaching behavior (Feltz et al., 1999). This would be consistent with coaches’ perceptions in Horn’s model, but not with coaches’ characteristics. Furthermore, as a belief in Horn’s model, CE would be influenced by a variety of sources, including organizational climate and coach characteristics.

The direct link between CE and coaching behaviors has been found in research with different samples and measures of coaching behavior (Feltz et al., 1999; Sullivan & Kent, 2003). For example, Feltz and colleagues investigated the efficacy-behavior relationship with high school basketball coaches. The 15 coaches in their sample with the highest efficacy scores were compared with the 15 with the lowest scores. More efficacious coaches demonstrated significantly greater praise and encouragement behaviors (e.g., positive reinforcement), and significantly less training and instruction behaviors (e.g., technical instruction) than their low efficacy counterparts. Similar results were found by Sullivan and Kent with university coaches.

Community support, playing experience, coaching experience, and perceived skills of athletes influence the efficacy of coaches (Feltz et al., 1999; Chase, Feltz, Hayashi & Hepler, 2005; Myers et al., 2005). These sources of efficacy have also been found in research with youth sport coaches (Feltz, Hepler, Roman, & Paiement, 2009). Specifically, more efficacious youth sport coaches perceived more support, had more extensive playing and coaching backgrounds, and thought their players improved more throughout the season compared with less efficacious coaches, particularly in terms of technique and game strategy efficacy. However, as Feltz et al. (2009) suggested, future research is needed to understand more about CE at various levels of sport (including youth sport) and different organizational types (in this study, operationalized as variations in competitive context).

Level of coaching education has also been established as a powerful source of CE (Campbell & Sullivan, 2005). Research has shown that coaches who completed a formal coach education course demonstrated significantly greater CE than both their precourse scores and control groups of coaches who did not take a course (Lee, Malete & Feltz, 2002; Malete & Feltz, 2000). These studies reinforce the need to examine coach education in conjunction with coaching at different competitive levels.

Thus, evidence shows that coaches with higher efficacy engage in different types of coaching behaviors than coaches with lower efficacy (i.e., Feltz et al., 1999; Sullivan & Kent, 2003). Taking assumptions from the Horn (2008) working model, and the evidence showing a direct link from CE to coach behaviors into account, there is a disconnect in the literature and it may therefore be important to examine the construct of CE and its affect on perceived coaching behaviors among coaches operating at different competitive levels in youth sport. Interestingly, in
studies reported above, similar results were obtained despite the fact that Feltz and colleagues used an objective measure of coaching behavior whereas Sullivan and Kent used a measure of coaches’ self-perceptions of coaching behavior. Horn notes that measurement of coaches’ self-perception of their behavior can provide valid and valuable information concerning the effective or ineffective norms of coaching behavior (Horn, 2008). This approach is most obvious in research utilizing the Leadership Scale for Sport (LSS; Chelladurai, 1978) and Revised LSS (RLSS; Zhang, Jensen, & Mann, 1997). Both of these scales include a self-evaluation version that allows coaches to reflect on their perceived coaching behaviors, however, Zhang and colleagues’ version tested and improved the measurement properties of the coaching self-evaluation and the overall factor structures (Magnusen, 2010). The LSS and RLSS have both demonstrated adequate internal reliability for coaches’ self-evaluations, and have been widely used in research to examine coaches’ perceived leadership behaviors (Jambor & Zhang, 1997; Magnusen, 2010; Salminen & Liukkonen, 1996; Zhang et al., 1997). Research using the RLSS indicates that coaches’ perceived behaviors are linked to observed behaviors (Cumming, Smith & Smoll, 2006; Salminen & Liukkonen, 1996).

In summary, the overall purposes of this study were to examine how coaching context and level of coaching education were related to CE and, subsequently, how CE was related to perceived leadership behaviors. Community versus competitive coaching contexts were proposed to constitute different organizational climates as per Horn’s (2008) framework, and would therefore have a significant effect on the efficacy-leadership relationship. Level of coaching education (certified vs. uncertified) has been a significant predictor of CE (Campbell & Sullivan, 2005; Lee et al., 2002; Malete & Feltz, 2000) and was therefore included in the design. Because the study involved the relationships among several discrete (i.e., competitive context, level of coaching education) and continuous (i.e., CE, perceived leadership behaviors) variables, structural equation modeling (SEM) was used to analyze the data.

The proposed model included the organizational climate factor of coaching context, coach education, along with the multifactorial constructs of CE and perceived coaching behavior. The latent variable of efficacy comprises the four factors of CE (i.e., game strategy, teaching technique, motivation and character building), and perceived coaching behaviors comprises the four leadership factors of the RLSS (i.e., positive feedback, social support, training and instruction, and situational consideration). The discrete variables of coach education (i.e., certified or not) and coaching context (i.e., competitive or community) were used to predict efficacy, which was used to predict perceived coaching behavior. The model is presented in Figure 1. It was hypothesized that this model would provide a significant fit to the data, and that within the model, both coach education and context would significantly predict efficacy, which subsequently would significantly predict perceived leadership style.

Method

Participants

One hundred and seventy-two coaches (62 community, 110 competitive) participated in the study. Coaches who coached children between the ages of 12 and 16 years...
were targeted, because children are still heavily involved in both community and competitive level sport during these age periods and as such the contexts could be distinguished (whereas there are fewer competitive programs for younger children and conversely few community programs for older [i.e., 17 years and older] adolescents). Sport context was not controlled in this study; participants coached in the context (i.e., community/competitive) in which they chose to work. Community coaches included 45 males and 15 females (2 coaches did not indicate their gender), whereas competitive coaches included 86 males and 24 females. The most numerous sports coached were basketball \((n = 63)\); swimming \((n = 23)\); golf \((n = 20)\); ice hockey \((n = 16)\); baseball \((n = 13)\); and sledge hockey (a version of ice hockey for athletes with a disability; \(n = 12)\). The coaches ranged in age from 16 to 70 years \((M = 41.09, SD = 11.82)\), had between 2 and 45 years of experience \((M = 12.87, SD = 7.31)\), and, as per the sampling criterion, coached children between the ages of 12 and 16 years. With regards to coach education, 35.4% of community coaches \((n = 22)\) and 91.8% of competitive coaches \((n = 101)\) reported completing
Coaching Efficacy and Leadership Behaviors in Youth Sport

a coaching certification course; the remainder of coaches had not completed any coaching certification course.

Instruments

CE was measured using the youth sport version of the Coaching Efficacy Scale (CES) developed by Myers, Feltz, and Wolfe (2008). The CES measures four specific dimensions of CE—motivation, teaching, game strategy, and character building. In addition to the multiple dimensions of the instrument, the second order factor of GCE has also been empirically validated (Feltz et al., 1999; Myers et al., 2008). The CES consists of 24 items that coaches responded to on a Likert-type scale ranging from 1 (Not At All Confident) to 4 (Extremely Confident). All items begin with the same stem question: “How confident are you in your ability to….” Motivation efficacy was represented by 7 items (e.g., motivate your athletes), as was game strategy efficacy (e.g., recognize opposing team’s strengths during competition). Teaching efficacy was measured by 6 items (e.g., detect skill errors), and character building efficacy with 4 items (e.g., promote good sportsmanship). Previous studies support the validity, reliability, and factor structure of this scale (Feltz et al., 1999; Myers et al., 2008). With the current sample, the Cronbach’s alphas for the subscales ranged from .86–.91, which exceed Nunally’s (1970) recommendation of .70 for acceptable internal reliability.

Leadership behaviors were measured using the Revised Leadership Scale for Sports (RLSS) developed by Zhang et al., (1997). The six-factor structure of leadership behaviors is represented through 60 items that are measured using a 5-point Likert-type scale ranging from 1 (Always) to 5 (Never). All items are preceded with the phrase, “In coaching, I….” Democratic behavior was represented by 12 items (e.g., let the athletes share in decision making and policy formulation), as was positive feedback (e.g., congratulate an athlete after a good play). Situation consideration was measured by 10 items (e.g., adapt coaching style to suit the situation), as was teaching and instruction (e.g., explain to each athlete the techniques and tactics of the sport). Finally, both social support (e.g., encourage close and informal relationship with the athletes) and autocratic behavior (e.g., disregard athletes’ fears and dissatisfactions) were represented by 8 items. Of these six factors, training and instruction, positive feedback, social support and situational consideration comprised leadership behaviors whereas the other two comprised decision making styles of the coach (Chelladurai, 2007). Since the current study dealt explicitly with leadership behavior, only those four factors were used in the data analyses. Support for the validity and reliability of the scale can be found in Zhang et al.’s (1997) article. With the current sample, Cronbach’s alphas for the factors of training and instruction (.85), positive feedback (.82), situational consideration (.80) and social support (.75) were all above the accepted level of .70. Further support for the psychometrics of the scale were offered by Jambor and Zhang (1997).

This measure operationalizes coaching behavior through the self-perception of the coaches. Although studies on the efficacy-leadership relationship have used other methods of measuring behavior, including objective assessment (Feltz et al., 1999), other studies (e.g., Mallet & Côté, 2006; Pelletier et al., 2002; Sullivan & Kent, 2003) have successfully used self-report measures of perceived coaching
behaviors without any apparent detrimental effects. It has further been suggested that scales of perceived behavior can provide valid and valuable information concerning the effective or ineffective norms of coaching behavior (Horn, 2008). Furthermore, researchers have noted that the factors of the CBAS (an observational measure) and LSS (a self-report measure) have substantial statistical overlap (Cumming et al., 2006). Coaches’ self-assessment can therefore be regarded as a valid assessment of coaching behavior.

Procedure

Research ethics board approval was granted for this web-based study. The informed consent package, demographic questionnaire, CES, and RLSS were accessed through a link to a secure website. Individual coaches were contacted via e-mails sent through regional or provincial sport governing bodies on behalf of the researchers. These organizations sent an e-mail invitation to these coaches with a hyperlink to the survey. Approximately halfway through the data collection process, the website was updated so that the surveys were counterbalanced. All coaches provided informed consent before completing the questionnaires. A response rate is unavailable since it was not known how many coaches actually received and read the recruitment e-mails.

Results

Before the planned SEM procedures, data were analyzed to establish if the assumptions of multivariate data analyses were upheld. This procedure included an examination of the correlations within the factors of the CES and RLSS. The correlations among the four factors of the CES ranged from 0.60–0.76, and those within the four factors of the RLSS ranged from 0.24 to 0.75; all correlations were significant at \(p < .05 \).

Table 1 gives the descriptive statistics for the variables of the four factors of the CES, as well as the RLSS factors of training and instruction, positive feedback, social support, and situational consideration. All variables were normally distributed. The mean score for coaching efficacies were quite high, as has been typically found in previous studies (e.g., Feltz et al., 1999; Sullivan & Kent, 2003). The scores for leadership behavior were also moderate to high, which is consistent with previous research (see Chelladurai, 2007). There were no gender differences on the LSS or CES factors, and no difference in age between community and competitive coaches \(p > .05 \). Experience was uncorrelated to any of the leadership or efficacy factors \(p > .05 \). There were no gender difference on leadership styles, but males were significantly more efficacious than females \(p < .05 \). Scatterplots revealed that the relationships among CES factors and each of the leadership behaviors were linear, and correlations ranged from 0.22 to 0.68, indicating no multicollinearity. Furthermore, calculations of normalized Mardia’s coefficients for the model was 1.00, indicating an acceptable level of multivariate normality within each data set.

The model was tested with EQS version 6.1. Model fit is typically assessed through several indicators. Accepted criteria for excellent goodness of fit include above .95 on the Comparative Fit Index (CFI) and other goodness of fit indexes (Hu & Bentler, 1999), .10 or less for the Root Mean Square Error of Approximation
Coaching Efficacy and Leadership Behaviors in Youth Sport

129

For this model, the CFI = .931, NNFI = .900, RMSEA = .094, SRMR = .067. Overall, the indices indicate a very good fit of the model to the data. Each of the factor loadings for CES factors on the latent variable of CE, and the RLSS factors on the latent variable of perceived leadership, respectively, were significant at \(p < .05 \). The pathway between CE and perceived coaching behavior was significant at \(p < .05 \), as was the pathway from coaching education to CE; the pathway from coaching context to CE was not significant.

Discussion

The purposes of this study were to examine how coaching context and level of coaching education were related to CE and, subsequently, how CE was related to perceived leadership behaviors. Contrary to Horn’s (2008) model, the competitive context (our operationalization of organizational context) did not significantly predict CE. However, coach education significantly affected CE. Furthermore, CE predicted the perceived leadership behaviors of training and instruction, positive feedback, social support, and situational consideration. Hence, the hypotheses were partially supported (Table 2).

According to Horn (2008), different organizational climates would have an effect on the efficacy-leadership behavior relationship, but this was not the case in the current study. Although youth sport is a unique organizational climate, the distinction between community and competitive youth sport may not be enough to affect the efficacy-leadership relationship. It may be that, regardless of specific youth sport context, these coaches were quite efficacious in their coaching abilities. The lack of distinction between these two contexts may also be influenced by coaches’ choice of context. The coaches in this sample (and in the Canadian

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation Efficacy</td>
<td>3.25</td>
<td>0.53</td>
<td>-0.50</td>
<td>-0.37</td>
<td>.90</td>
</tr>
<tr>
<td>Strategy Efficacy</td>
<td>3.22</td>
<td>0.55</td>
<td>-0.41</td>
<td>-0.31</td>
<td>.91</td>
</tr>
<tr>
<td>Teaching Technique Efficacy</td>
<td>3.30</td>
<td>0.52</td>
<td>-0.60</td>
<td>-0.10</td>
<td>.87</td>
</tr>
<tr>
<td>Character Building Efficacy</td>
<td>3.62</td>
<td>0.46</td>
<td>-0.97</td>
<td>0.10</td>
<td>.86</td>
</tr>
<tr>
<td>Training and Instruction</td>
<td>4.31</td>
<td>0.43</td>
<td>-0.44</td>
<td>-0.23</td>
<td>.85</td>
</tr>
<tr>
<td>Positive Feedback</td>
<td>4.49</td>
<td>0.45</td>
<td>-0.94</td>
<td>0.20</td>
<td>.82</td>
</tr>
<tr>
<td>Social Support</td>
<td>3.50</td>
<td>0.63</td>
<td>-0.17</td>
<td>-0.26</td>
<td>.75</td>
</tr>
<tr>
<td>Situational Consideration</td>
<td>4.22</td>
<td>0.45</td>
<td>-0.16</td>
<td>-0.21</td>
<td>.80</td>
</tr>
</tbody>
</table>

Note. Coaching Efficacy was measured on a scale of 1–4; Training and Instruction, Positive Feedback, Social Support, and Situational Consideration were measured on a scale of 1–5.

(RMSEA) and .08 or less for the Standardized Root Mean Residual (SRMR; Hu & Bentler, 1999). For this model, the CFI = .931, NNFI = .900, RMSEA = .094, SRMR = .067. Overall, the indices indicate a very good fit of the model to the data. Each of the factor loadings for CES factors on the latent variable of CE, and the RLSS factors on the latent variable of perceived leadership, respectively, were significant at \(p < .05 \). The pathway between CE and perceived coaching behavior was significant at \(p < .05 \), as was the pathway from coaching education to CE; the pathway from coaching context to CE was not significant.

The purposes of this study were to examine how coaching context and level of coaching education were related to CE and, subsequently, how CE was related to perceived leadership behaviors. Contrary to Horn’s (2008) model, the competitive context (our operationalization of organizational context) did not significantly predict CE. However, coach education significantly affected CE. Furthermore, CE predicted the perceived leadership behaviors of training and instruction, positive feedback, social support, and situational consideration. Hence, the hypotheses were partially supported (Table 2).

According to Horn (2008), different organizational climates would have an effect on the efficacy-leadership behavior relationship, but this was not the case in the current study. Although youth sport is a unique organizational climate, the distinction between community and competitive youth sport may not be enough to affect the efficacy-leadership relationship. It may be that, regardless of specific youth sport context, these coaches were quite efficacious in their coaching abilities. The lack of distinction between these two contexts may also be influenced by coaches’ choice of context. The coaches in this sample (and in the Canadian
Table 2 Summary of Structural Equation Models

<table>
<thead>
<tr>
<th>Model</th>
<th>CFI</th>
<th>GFI</th>
<th>SRMR</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Feedback</td>
<td>.954</td>
<td>.984</td>
<td>.055</td>
<td>.09</td>
</tr>
<tr>
<td>Training and Instruction</td>
<td>.946</td>
<td>.978</td>
<td>.071</td>
<td>.12</td>
</tr>
<tr>
<td>Situational Consideration</td>
<td>.919</td>
<td>.971</td>
<td>.081</td>
<td>.15</td>
</tr>
<tr>
<td>Social Support</td>
<td>.844</td>
<td>.963</td>
<td>.094</td>
<td>.18</td>
</tr>
</tbody>
</table>
As Horn (2008) noted, youth sport constitutes a different organizational context of coaching than adult sport. Although the demands on coaches may vary according to the organizational context of coaching (Horn, 2008), the current results suggest that the relationship between efficacy and leadership behavior operates in this context much the same as in other, previously researched contexts. One area where this relationship may be somewhat ambivalent is the correlation between efficacy and training and instruction. Whereas the current relationship was positive, previous research results found that CE was negatively related to training and instruction (Sullivan & Kent, 2003). However, the Sullivan and Kent sample comprised university coaches, which may reflect a contextual difference between collegiate and youth sport coaching. It is also worth noting that other research, using a different operationalization of coaching behavior, found a positive relationship between confidence and instructional behavior (Feltz et al., 1999). With respect to the other measures of coaching behavior, it appears that increased efficacy is generally associated with more frequent displays of effective coaching behaviors. This includes behaviors that are particularly relevant to youth sport participation, including congratulating athletes after successful performance (positive feedback), looking out for the welfare of athletes (social support), and coaching to the level of the athletes (situational favorableness).

Although the current findings offer new insights into coaching and youth sport, some limitations exist. First, given the self-report survey for coaching behavior, the present results may not be generalizeable to actual observed pattern of coaching relationships. That said, measurement of coaches’ self-perceptions to represent behavior is accepted, and has been widely used in the literature (Cumming et al., 2006; Mallet & Côté, 2006; Pelletier et al., 2002). The research design meant that it was not possible to infer causality or directionality of the studied relationships. The measure of coach education used was operationalized as a simple dichotomous variable (i.e., coach has or has not participated in coach education programs). Given that multiple types of coach education programs exist, it will be important in the future to more clearly specify coaches’ level of coach education. Within the current analysis, this dichotomization of coaching education may represent a limitation in the variation within the SEM model, and therefore may affect the generalizability of the results. The generalizability of the findings is also limited due to some of the unique contextual conditions surrounding the structure of community versus competitive coaching in Canada. Furthermore, the imbalance of community versus competitive coaches (i.e., 92% of the sample were competitive coaches) may have influenced the analysis. However, it must be acknowledged that one of the goals of this study was to analyze these relationships within an ecologically valid design. It may be that the vast majority of coaches in youth sport in Canada identify themselves as participating in competitive sport. The dominance of male coaches in this study likely reflects imbalances in the coaching community (i.e., there are more male than female coaches). Nonetheless, future research that more thoroughly addresses issues of coach education, competitive level, and gender could make important contributions to the CE and leadership literatures.

In spite of these limitations, this study makes several theoretical and practical contributions. Theoretically, it extends the developing body of CE literature to youth sport while indicating that different types of youth sport may comprise one coaching context. Practically, the current results have implications for both
coaching youth sport and for the educational programs of these coaches. When coaching athletes aged 12–16, the coaching behaviors of training and instruction and positive feedback are particularly relevant. At this age, athletes are still learning the basic skills and strategies of their sport, and coaches with strong training and instructional skills should be particularly influential. Further, praise and encouragement have been noted to be an effective coaching behavior with adolescent athletes (Smith & Smoll, 1990). The present study clarifies a salient source of these important behaviors. Youth sport coaches should be aware that these behaviors are linked to their efficacy as coaches. More specifically, they are related to their global CE, not the specific factors of the CES (e.g., strategy). Thus, it appears that youth coaches’ need to be confident in their overall abilities to optimally affect their athletes. Because coach education has such a profound impact on CE, it is imperative that youth sport organizations support the education of their coaches through certified coach education programs. Such programs appear to be a wise investment in terms of their effect on CE, coaches’ behaviors, and ultimately, the experience of the youth sport participant.

References

